Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Transductive One-Shot Learning Meet Subspace Decomposition (2504.00348v2)

Published 1 Apr 2025 in cs.CV

Abstract: One-shot learning focuses on adapting pretrained models to recognize newly introduced and unseen classes based on a single labeled image. While variations of few-shot and zero-shot learning exist, one-shot learning remains a challenging yet crucial problem due to its ability to generalize knowledge to unseen classes from just one human-annotated image. In this paper, we introduce a transductive one-shot learning approach that employs subspace decomposition to utilize the information from labeled images in the support set and unlabeled images in the query set. These images are decomposed into a linear combination of latent variables representing primitives captured by smaller subspaces. By representing images in the query set as linear combinations of these latent primitives, we can propagate the label from a single image in the support set to query images that share similar combinations of primitives. Through a comprehensive quantitative analysis across various neural network feature extractors and datasets, we demonstrate that our approach can effectively generalize to novel classes from just one labeled image.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube