Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GazeLLM: Multimodal LLMs incorporating Human Visual Attention (2504.00221v1)

Published 31 Mar 2025 in cs.HC, cs.AI, and cs.CV

Abstract: LLMs are advancing into Multimodal LLMs (MLLMs), capable of processing image, audio, and video as well as text. Combining first-person video, MLLMs show promising potential for understanding human activities through video and audio, enabling many human-computer interaction and human-augmentation applications such as human activity support, real-world agents, and skill transfer to robots or other individuals. However, handling high-resolution, long-duration videos generates large latent representations, leading to substantial memory and processing demands, limiting the length and resolution MLLMs can manage. Reducing video resolution can lower memory usage but often compromises comprehension. This paper introduces a method that optimizes first-person video analysis by integrating eye-tracking data, and proposes a method that decomposes first-person vision video into sub areas for regions of gaze focus. By processing these selectively gazed-focused inputs, our approach achieves task comprehension equivalent to or even better than processing the entire image at full resolution, but with significantly reduced video data input (reduce the number of pixels to one-tenth), offering an efficient solution for using MLLMs to interpret and utilize human skills.

Summary

We haven't generated a summary for this paper yet.