Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Generating Structured Plan Representation of Procedures with LLMs (2504.00029v1)

Published 28 Mar 2025 in cs.SE and cs.AI

Abstract: In this paper, we address the challenges of managing Standard Operating Procedures (SOPs), which often suffer from inconsistencies in language, format, and execution, leading to operational inefficiencies. Traditional process modeling demands significant manual effort, domain expertise, and familiarity with complex languages like Business Process Modeling Notation (BPMN), creating barriers for non-techincal users. We introduce SOP Structuring (SOPStruct), a novel approach that leverages LLMs to transform SOPs into decision-tree-based structured representations. SOPStruct produces a standardized representation of SOPs across different domains, reduces cognitive load, and improves user comprehension by effectively capturing task dependencies and ensuring sequential integrity. Our approach enables leveraging the structured information to automate workflows as well as empower the human users. By organizing procedures into logical graphs, SOPStruct facilitates backtracking and error correction, offering a scalable solution for process optimization. We employ a novel evaluation framework, combining deterministic methods with the Planning Domain Definition Language (PDDL) to verify graph soundness, and non-deterministic assessment by an LLM to ensure completeness. We empirically validate the robustness of our LLM-based structured SOP representation methodology across SOPs from different domains and varying levels of complexity. Despite the current lack of automation readiness in many organizations, our research highlights the transformative potential of LLMs to streamline process modeling, paving the way for future advancements in automated procedure optimization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube