Distributed AC Optimal Power Flow: A Scalable Solution for Large-Scale Problems (2503.24086v2)
Abstract: This paper introduces a novel distributed optimization framework for large-scale AC Optimal Power Flow (OPF) problems, offering both theoretical convergence guarantees and rapid convergence in practice. By integrating smoothing techniques and the Schur complement, the proposed approach addresses the scalability challenges and reduces communication overhead in distributed AC OPF. Additionally, optimal network decomposition enables efficient parallel processing under the single program multiple data (SPMD) paradigm. Extensive simulations on large-scale benchmarks across various operating scenarios indicate that the proposed framework outperforms the state-of-the-art centralized solver IPOPT on modest hardware. This paves the way for more scalable and efficient distributed optimization in future power system applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.