Papers
Topics
Authors
Recent
2000 character limit reached

Electromagnetic multipole expansions and the logarithmic soft photon theorem (2503.23937v3)

Published 31 Mar 2025 in hep-th

Abstract: We study the general structure of the electromagnetic field in the vicinity of spatial infinity. Starting from the general solution of the sourced Maxwell equations written in terms of multipole moments as obtained by Iyer and Damour, we derive the expansion of the electromagnetic field perturbatively in the electromagnetic coupling. At leading order, where the effect of long-range Coulombic interactions between charged particles is neglected, we discover infinite sets of antipodal matching relations satisfied by the electromagnetic field, which extend and sometimes correct previously known relations. At next-to-leading order, electromagnetic tails resulting from these Coulombic interactions appear, which affect the antipodal matching relations beyond those equivalent to the leading soft photon theorem. Moreover, new antipodal matching relations arise, which we use to re-derive the classical logarithmic soft photon theorem of Sahoo and Sen. Our analysis largely builds upon that of Campiglia and Laddha, although it invalidates the antipodal matching relation which they originally used in their derivation. The antipodal matching relations and the proof of the classical logarithmic soft photon theorem agree with an earlier analysis of Bhatkar, which we generalize using other methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 4 likes about this paper.