Papers
Topics
Authors
Recent
2000 character limit reached

A Conceptual Framework for Human-AI Collaborative Genome Annotation (2503.23691v1)

Published 31 Mar 2025 in q-bio.GN and cs.HC

Abstract: Genome annotation is essential for understanding the functional elements within genomes. While automated methods are indispensable for processing large-scale genomic data, they often face challenges in accurately predicting gene structures and functions. Consequently, manual curation by domain experts remains crucial for validating and refining these predictions. These combined outcomes from automated tools and manual curation highlight the importance of integrating human expertise with AI capabilities to improve both the accuracy and efficiency of genome annotation. However, the manual curation process is inherently labor-intensive and time-consuming, making it difficult to scale for large datasets. To address these challenges, we propose a conceptual framework, Human-AI Collaborative Genome Annotation (HAICoGA), which leverages the synergistic partnership between humans and artificial intelligence to enhance human capabilities and accelerate the genome annotation process. Additionally, we explore the potential of integrating LLMs into this framework to support and augment specific tasks. Finally, we discuss emerging challenges and outline open research questions to guide further exploration in this area.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.