Papers
Topics
Authors
Recent
2000 character limit reached

Rethinking Structural Equation Modeling in Political Science: Challenges, Best Practices, and Future Directions (2503.23551v1)

Published 30 Mar 2025 in stat.AP

Abstract: Structural Equation Modeling (SEM) or Covariance Structure Analysis (CSA) is a versatile and powerful method in the social and behavioral sciences, providing a framework for modeling complex relationships, testing mediation, accounting for measurement error, and analyzing latent constructs. However, SEM remains underutilized in in political science; its application is often marred by misunderstandings, misinterpretations, and methodological pitfalls that can compromise the validity and interpretability of findings. This article examines key challenges in SEM applications within political science, including test statistics and fit indices, model specification, estimator selection, and causal inference. It offers practical recommendations for enhancing methodological rigor and introduces recent advancements in causal inference.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.