Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stable fully discrete finite element methods with BGN tangential motion for Willmore flow of planar curves (2503.23152v1)

Published 29 Mar 2025 in math.NA and cs.NA

Abstract: We propose and analyze stable finite element approximations for WiLLMore flow of planar curves. The presented schemes are based on a novel weak formulation which combines an evolution equation for curvature with the curvature formulation originally proposed by Barrett, Garcke and N\"urnberg (BGN) in \cite{BGN07}. Under discretization in space with piecewise linear elements this leads to a stable continuous-in-time semidiscrete scheme, which retains the equidistribution property from the BGN methods. Furthermore, two fully discrete schemes can be shown to satisfy unconditional energy stability estimates. Numerical examples are presented to showcase the good properties of the introduced schemes, including an asymptotic equidistribution of vertices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.