Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distances between finite-horizon linear behaviors (2503.22849v2)

Published 28 Mar 2025 in math.OC, cs.SY, and eess.SY

Abstract: The paper introduces a class of distances for linear behaviors over finite time horizons. These distances allow for comparisons between finite-horizon linear behaviors represented by matrices of possibly different dimensions. They remain invariant under coordinate changes, rotations, and permutations, ensuring independence from input-output partitions. Moreover, they naturally encode complexity-misfit trade-offs for Linear Time-Invariant (LTI) behaviors, providing a principled solution to a longstanding puzzle in behavioral systems theory. The resulting framework characterizes modeling as a minimum distance problem, identifying the Most Powerful Unfalsified Model (MPUM) as optimal among all systems unfalsified by a given dataset. Finally, we illustrate the value of these metrics in a time series anomaly detection task, where their finer resolution yields superior performance over existing distances.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.