Papers
Topics
Authors
Recent
2000 character limit reached

Harnessing uncertainty when learning through Equilibrium Propagation in neural networks (2503.22810v1)

Published 28 Mar 2025 in cs.LG, cond-mat.mtrl-sci, and physics.app-ph

Abstract: Equilibrium Propagation (EP) is a supervised learning algorithm that trains network parameters using local neuronal activity. This is in stark contrast to backpropagation, where updating the parameters of the network requires significant data shuffling. Avoiding data movement makes EP particularly compelling as a learning framework for energy-efficient training on neuromorphic systems. In this work, we assess the ability of EP to learn on hardware that contain physical uncertainties. This is particularly important for researchers concerned with hardware implementations of self-learning systems that utilize EP. Our results demonstrate that deep, multi-layer neural network architectures can be trained successfully using EP in the presence of finite uncertainties, up to a critical limit. This limit is independent of the training dataset, and can be scaled through sampling the network according to the central limit theorem. Additionally, we demonstrate improved model convergence and performance for finite levels of uncertainty on the MNIST, KMNIST and FashionMNIST datasets. Optimal performance is found for networks trained with uncertainties close to the critical limit. Our research supports future work to build self-learning hardware in situ with EP.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.