Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Integrable Corners in the Space of Gukov-Witten Surface Defects (2503.22598v2)

Published 28 Mar 2025 in hep-th

Abstract: We investigate integrability properties of Gukov-Witten 1/2-BPS surface defects in $SU(N)$ $\mathcal{N}=4$ super-Yang-Mills (SYM) theory in the large-$N$ limit. We demonstrate that ordinary Gukov-Witten defects, which depend on a set of continuous parameters, are not integrable except for special sub-sectors. In contrast to these, we show that rigid Gukov-Witten defects, which depend on a discrete parameter but not on continuous ones, appear integrable in a corner of the discrete parameter space. Whenever we find an integrable sector, we derive a closed-form factorised expression for the leading-order one-point function of unprotected operators built out of the adjoint scalars of $\mathcal{N}=4$ SYM theory. Our results raise the possibility of finding an all-loop formula for one-point functions of unprotected operators in the presence of a rigid Gukov-Witten defect at the corner in parameter space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube