Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data-Driven Nonlinear Model Reduction to Spectral Submanifolds via Oblique Projection (2503.21895v1)

Published 27 Mar 2025 in math.DS, cs.CE, cs.SY, eess.SY, math.DG, and math.OC

Abstract: The dynamics in a primary Spectral Submanifold (SSM) constructed over the slowest modes of a dynamical system provide an ideal reduced-order model for nearby trajectories. Modeling the dynamics of trajectories further away from the primary SSM, however, is difficult if the linear part of the system exhibits strong non-normal behavior. Such non-normality implies that simply projecting trajectories onto SSMs along directions normal to the slow linear modes will not pair those trajectories correctly with their reduced counterparts on the SSMs. In principle, a well-defined nonlinear projection along a stable invariant foliation exists and would exactly match the full dynamics to the SSM-reduced dynamics. This foliation, however, cannot realistically be constructed from practically feasible amounts and distributions of experimental data. Here we develop an oblique projection technique that is able to approximate this foliation efficiently, even from a single experimental trajectory of a significantly non-normal and nonlinear beam.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.