Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the reverse isoperimetric inequality in Gauss space (2503.21625v1)

Published 27 Mar 2025 in math.AP

Abstract: In this paper we investigate the reverse isoperimetric inequality with respect to the Gaussian measure for convex sets in $\mathbb{R}{2}$. While the isoperimetric problem for the Gaussian measure is well understood, many relevant aspects of the reverse problem have not yet been investigated. In particular, to the best of our knowledge, there seem to be no results on the shape that the isoperimetric set should take. Here, through a local perturbation analysis, we show that smooth perimeter-maximizing sets have locally flat boundaries. Additionally, we derive sharper perimeter bounds than those previously known, particularly for specific classes of convex sets such as the convex sets symmetric with respect to the axes. Finally, for quadrilaterals with vertices on the coordinate axes, we prove that the set maximizing the perimeter "degenerates" into the x-axis, traversed twice.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube