Papers
Topics
Authors
Recent
2000 character limit reached

A Tolerant Independent Set Tester (2503.21441v1)

Published 27 Mar 2025 in cs.DS

Abstract: We give nearly optimal bounds on the sample complexity of $(\widetilde{\Omega}(\epsilon),\epsilon)$-tolerant testing the $\rho$-independent set property in the dense graph setting. In particular, we give an algorithm that inspects a random subgraph on $\widetilde{O}(\rho3/\epsilon2)$ vertices and, for some constant $c,$ distinguishes between graphs that have an induced subgraph of size $\rho n$ with fewer than $\frac{\epsilon}{c \log4(1/\epsilon)} n2$ edges from graphs for which every induced subgraph of size $\rho n$ has at least $\epsilon n2$ edges. Our sample complexity bound matches, up to logarithmic factors, the recent upper bound by Blais and Seth (2023) for the non-tolerant testing problem, which is known to be optimal for the non-tolerant testing problem based on a lower bound by Feige, Langberg and Schechtman (2004). Our main technique is a new graph container lemma for sparse subgraphs instead of independent sets. We also show that our new lemma can be used to generalize one of the classic applications of the container method, that of counting independent sets in regular graphs, to counting sparse subgraphs in regular graphs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 4 likes about this paper.