Real-Time Evaluation Models for RAG: Who Detects Hallucinations Best? (2503.21157v3)
Abstract: This article surveys Evaluation models to automatically detect hallucinations in Retrieval-Augmented Generation (RAG), and presents a comprehensive benchmark of their performance across six RAG applications. Methods included in our study include: LLM-as-a-Judge, Prometheus, Lynx, the Hughes Hallucination Evaluation Model (HHEM), and the Trustworthy LLM (TLM). These approaches are all reference-free, requiring no ground-truth answers/labels to catch incorrect LLM responses. Our study reveals that, across diverse RAG applications, some of these approaches consistently detect incorrect RAG responses with high precision/recall.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.