Papers
Topics
Authors
Recent
2000 character limit reached

Cloud Resource Allocation with Convex Optimization (2503.21096v1)

Published 27 Mar 2025 in cs.DC and cs.PF

Abstract: We present a convex optimization framework for overcoming the limitations of Kubernetes Cluster Autoscaler by intelligently allocating diverse cloud resources while minimizing costs and fragmentation. Current Kubernetes scaling mechanisms are restricted to homogeneous scaling of existing node types, limiting cost-performance optimization possibilities. Our matrix-based model captures resource demands, costs, and capacity constraints in a unified mathematical framework. A key contribution is our logarithmic approximation to the indicator function, which enables dynamic node type selection while maintaining problem convexity. Our approach balances cost optimization with operational complexity through interior-point methods. Experiments with real-world Kubernetes workloads demonstrate reduced costs and improved resource utilization compared to conventional Cluster Autoscaler strategies that can only scale up or down existing node pools.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com