Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Integrate Meta-analysis into Specific Study (InMASS) for Estimating Conditional Average Treatment Effect (2503.21091v1)

Published 27 Mar 2025 in stat.ME

Abstract: Randomized controlled trials are the standard method for estimating causal effects, ensuring sufficient statistical power and confidence through adequate sample sizes. However, achieving such sample sizes is often challenging. This study proposes a novel method for estimating the average treatment effect (ATE) in a target population by integrating and reconstructing information from previous trials using only summary statistics of outcomes and covariates through meta-analysis. The proposed approach combines meta-analysis, transfer learning, and weighted regression. Unlike existing methods that estimate the ATE based on the distribution of source trials, our method directly estimates the ATE for the target population. The proposed method requires only the means and variances of outcomes and covariates from the source trials and is theoretically valid under the covariate shift assumption, regardless of the covariate distribution in the source trials. Simulations and real-data analyses demonstrate that the proposed method yields a consistent estimator and achieves higher statistical power than the estimator derived solely from the target trial.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.