Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

World Model Agents with Change-Based Intrinsic Motivation (2503.21047v1)

Published 26 Mar 2025 in cs.LG

Abstract: Sparse reward environments pose a significant challenge for reinforcement learning due to the scarcity of feedback. Intrinsic motivation and transfer learning have emerged as promising strategies to address this issue. Change Based Exploration Transfer (CBET), a technique that combines these two approaches for model-free algorithms, has shown potential in addressing sparse feedback but its effectiveness with modern algorithms remains understudied. This paper provides an adaptation of CBET for world model algorithms like DreamerV3 and compares the performance of DreamerV3 and IMPALA agents, both with and without CBET, in the sparse reward environments of Crafter and Minigrid. Our tabula rasa results highlight the possibility of CBET improving DreamerV3's returns in Crafter but the algorithm attains a suboptimal policy in Minigrid with CBET further reducing returns. In the same vein, our transfer learning experiments show that pre-training DreamerV3 with intrinsic rewards does not immediately lead to a policy that maximizes extrinsic rewards in Minigrid. Overall, our results suggest that CBET provides a positive impact on DreamerV3 in more complex environments like Crafter but may be detrimental in environments like Minigrid. In the latter case, the behaviours promoted by CBET in DreamerV3 may not align with the task objectives of the environment, leading to reduced returns and suboptimal policies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.