Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hardware Efficient Accelerator for Spiking Transformer With Reconfigurable Parallel Time Step Computing

Published 25 Mar 2025 in cs.AR | (2503.19643v1)

Abstract: This paper introduces the first low-power hardware accelerator for Spiking Transformers, an emerging alternative to traditional artificial neural networks. By modifying the base Spikformer model to use IAND instead of residual addition, the model exclusively utilizes spike computation. The hardware employs a fully parallel tick-batching dataflow and a time-step reconfigurable neuron architecture, addressing the delay and power challenges of multi-timestep processing in spiking neural networks. This approach processes outputs from all time steps in parallel, reducing computation delay and eliminating membrane memory, thereby lowering energy consumption. The accelerator supports 3x3 and 1x1 convolutions and matrix operations through vectorized processing, meeting model requirements. Implemented in TSMC's 28nm process, it achieves 3.456 TSOPS (tera spike operations per second) with a power efficiency of 38.334 TSOPS/W at 500MHz, using 198.46K logic gates and 139.25KB of SRAM.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.