Papers
Topics
Authors
Recent
2000 character limit reached

Lifting Linear Sketches: Optimal Bounds and Adversarial Robustness (2503.19629v1)

Published 25 Mar 2025 in cs.DS

Abstract: We introduce a novel technique for ``lifting'' dimension lower bounds for linear sketches in the real-valued setting to dimension lower bounds for linear sketches with polynomially-bounded integer entries when the input is a polynomially-bounded integer vector. Using this technique, we obtain the first optimal sketching lower bounds for discrete inputs in a data stream, for classical problems such as approximating the frequency moments, estimating the operator norm, and compressed sensing. Additionally, we lift the adaptive attack of Hardt and Woodruff (STOC, 2013) for breaking any real-valued linear sketch via a sequence of real-valued queries, and show how to obtain an attack on any integer-valued linear sketch using integer-valued queries. This shows that there is no linear sketch in a data stream with insertions and deletions that is adversarially robust for approximating any $L_p$ norm of the input, resolving a central open question for adversarially robust streaming algorithms. To do so, we introduce a new pre-processing technique of independent interest which, given an integer-valued linear sketch, increases the dimension of the sketch by only a constant factor in order to make the orthogonal lattice to its row span smooth. This pre-processing then enables us to leverage results in lattice theory on discrete Gaussian distributions and reason that efficient discrete sketches imply efficient continuous sketches. Our work resolves open questions from the Banff '14 and '17 workshops on Communication Complexity and Applications, as well as the STOC '21 and FOCS '23 workshops on adaptivity and robustness.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.