Papers
Topics
Authors
Recent
2000 character limit reached

Optimization under uncertainty (2503.18561v1)

Published 24 Mar 2025 in math.OC and cs.SE

Abstract: One of the most ubiquitous problems in optimization is that of finding all the elements of a finite set at which a function $f$ attains its minimum (or maximum) on that set. When the codomain of $f$ is equipped with a reflexive, anti-symmetric and transitive relation, it is easy to specify, implement and verify generic solutions for this problem. But what if $f$ is affected by uncertainties? What if one seeks values that minimize more than one $f$ or if $f$ does not return a single result but a set of ``possible results'' or perhaps a probability distribution on possible results? This situation is very common in integrated assessment and optimal design and developing trustable solution methods for optimization under uncertainty requires one to formulate the above questions rigorously. We show how functional programming can help formulating such questions and apply it to specify and test solution methods for the case in which optimization is affected by two conceptually different kinds of uncertainty: \it{value} and \it{functorial} uncertainty.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.