Papers
Topics
Authors
Recent
Search
2000 character limit reached

ALWNN Empowered Automatic Modulation Classification: Conquering Complexity and Scarce Sample Conditions

Published 24 Mar 2025 in cs.LG and eess.SP | (2503.18375v1)

Abstract: In Automatic Modulation Classification (AMC), deep learning methods have shown remarkable performance, offering significant advantages over traditional approaches and demonstrating their vast potential. Nevertheless, notable drawbacks, particularly in their high demands for storage, computational resources, and large-scale labeled data, which limit their practical application in real-world scenarios. To tackle this issue, this paper innovatively proposes an automatic modulation classification model based on the Adaptive Lightweight Wavelet Neural Network (ALWNN) and the few-shot framework (MALWNN). The ALWNN model, by integrating the adaptive wavelet neural network and depth separable convolution, reduces the number of model parameters and computational complexity. The MALWNN framework, using ALWNN as an encoder and incorporating prototype network technology, decreases the model's dependence on the quantity of samples. Simulation results indicate that this model performs remarkably well on mainstream datasets. Moreover, in terms of Floating Point Operations Per Second (FLOPS) and Normalized Multiply - Accumulate Complexity (NMACC), ALWNN significantly reduces computational complexity compared to existing methods. This is further validated by real-world system tests on USRP and Raspberry Pi platforms. Experiments with MALWNN show its superior performance in few-shot learning scenarios compared to other algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.