Papers
Topics
Authors
Recent
2000 character limit reached

Cost-Sensitive Learning for Long-Tailed Temporal Action Segmentation

Published 24 Mar 2025 in cs.CV | (2503.18358v1)

Abstract: Temporal action segmentation in untrimmed procedural videos aims to densely label frames into action classes. These videos inherently exhibit long-tailed distributions, where actions vary widely in frequency and duration. In temporal action segmentation approaches, we identified a bi-level learning bias. This bias encompasses (1) a class-level bias, stemming from class imbalance favoring head classes, and (2) a transition-level bias arising from variations in transitions, prioritizing commonly observed transitions. As a remedy, we introduce a constrained optimization problem to alleviate both biases. We define learning states for action classes and their associated transitions and integrate them into the optimization process. We propose a novel cost-sensitive loss function formulated as a weighted cross-entropy loss, with weights adaptively adjusted based on the learning state of actions and their transitions. Experiments on three challenging temporal segmentation benchmarks and various frameworks demonstrate the effectiveness of our approach, resulting in significant improvements in both per-class frame-wise and segment-wise performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.