Papers
Topics
Authors
Recent
2000 character limit reached

Ground Penetrating Radar-Assisted Multimodal Robot Odometry Using Subsurface Feature Matrix (2503.18301v1)

Published 24 Mar 2025 in cs.RO

Abstract: Localization of robots using subsurface features observed by ground-penetrating radar (GPR) enhances and adds robustness to common sensor modalities, as subsurface features are less affected by weather, seasons, and surface changes. We introduce an innovative multimodal odometry approach using inputs from GPR, an inertial measurement unit (IMU), and a wheel encoder. To efficiently address GPR signal noise, we introduce an advanced feature representation called the subsurface feature matrix (SFM). The SFM leverages frequency domain data and identifies peaks within radar scans. Additionally, we propose a novel feature matching method that estimates GPR displacement by aligning SFMs. The integrations from these three input sources are consolidated using a factor graph approach to achieve multimodal robot odometry. Our method has been developed and evaluated with the CMU-GPR public dataset, demonstrating improvements in accuracy and robustness with real-time performance in robotic odometry tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.