Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Informer in Algorithmic Investment Strategies on High Frequency Bitcoin Data (2503.18096v1)

Published 23 Mar 2025 in q-fin.TR, cs.LG, cs.NE, and q-fin.PM

Abstract: The article investigates the usage of Informer architecture for building automated trading strategies for high frequency Bitcoin data. Three strategies using Informer model with different loss functions: Root Mean Squared Error (RMSE), Generalized Mean Absolute Directional Loss (GMADL) and Quantile loss, are proposed and evaluated against the Buy and Hold benchmark and two benchmark strategies based on technical indicators. The evaluation is conducted using data of various frequencies: 5 minute, 15 minute, and 30 minute intervals, over the 6 different periods. Although the Informer-based model with Quantile loss did not outperform the benchmark, two other models achieved better results. The performance of the model using RMSE loss worsens when used with higher frequency data while the model that uses novel GMADL loss function is benefiting from higher frequency data and when trained on 5 minute interval it beat all the other strategies on most of the testing periods. The primary contribution of this study is the application and assessment of the RMSE, GMADL, and Quantile loss functions with the Informer model to forecast future returns, subsequently using these forecasts to develop automated trading strategies. The research provides evidence that employing an Informer model trained with the GMADL loss function can result in superior trading outcomes compared to the buy-and-hold approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 8 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube