DualCP: Rehearsal-Free Domain-Incremental Learning via Dual-Level Concept Prototype (2503.18042v1)
Abstract: Domain-Incremental Learning (DIL) enables vision models to adapt to changing conditions in real-world environments while maintaining the knowledge acquired from previous domains. Given privacy concerns and training time, Rehearsal-Free DIL (RFDIL) is more practical. Inspired by the incremental cognitive process of the human brain, we design Dual-level Concept Prototypes (DualCP) for each class to address the conflict between learning new knowledge and retaining old knowledge in RFDIL. To construct DualCP, we propose a Concept Prototype Generator (CPG) that generates both coarse-grained and fine-grained prototypes for each class. Additionally, we introduce a Coarse-to-Fine calibrator (C2F) to align image features with DualCP. Finally, we propose a Dual Dot-Regression (DDR) loss function to optimize our C2F module. Extensive experiments on the DomainNet, CDDB, and CORe50 datasets demonstrate the effectiveness of our method.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.