Papers
Topics
Authors
Recent
2000 character limit reached

EMPLACE: Self-Supervised Urban Scene Change Detection

Published 22 Mar 2025 in cs.CV | (2503.17716v1)

Abstract: Urban change is a constant process that influences the perception of neighbourhoods and the lives of the people within them. The field of Urban Scene Change Detection (USCD) aims to capture changes in street scenes using computer vision and can help raise awareness of changes that make it possible to better understand the city and its residents. Traditionally, the field of USCD has used supervised methods with small scale datasets. This constrains methods when applied to new cities, as it requires labour-intensive labeling processes and forces a priori definitions of relevant change. In this paper we introduce AC-1M the largest USCD dataset by far of over 1.1M images, together with EMPLACE, a self-supervising method to train a Vision Transformer using our adaptive triplet loss. We show EMPLACE outperforms SOTA methods both as a pre-training method for linear fine-tuning as well as a zero-shot setting. Lastly, in a case study of Amsterdam, we show that we are able to detect both small and large changes throughout the city and that changes uncovered by EMPLACE, depending on size, correlate with housing prices - which in turn is indicative of inequity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.