Papers
Topics
Authors
Recent
2000 character limit reached

Planning and Learning in Average Risk-aware MDPs (2503.17629v1)

Published 22 Mar 2025 in cs.LG and math.OC

Abstract: For continuing tasks, average cost Markov decision processes have well-documented value and can be solved using efficient algorithms. However, it explicitly assumes that the agent is risk-neutral. In this work, we extend risk-neutral algorithms to accommodate the more general class of dynamic risk measures. Specifically, we propose a relative value iteration (RVI) algorithm for planning and design two model-free Q-learning algorithms, namely a generic algorithm based on the multi-level Monte Carlo method, and an off-policy algorithm dedicated to utility-base shortfall risk measures. Both the RVI and MLMC-based Q-learning algorithms are proven to converge to optimality. Numerical experiments validate our analysis, confirms empirically the convergence of the off-policy algorithm, and demonstrate that our approach enables the identification of policies that are finely tuned to the intricate risk-awareness of the agent that they serve.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.