Papers
Topics
Authors
Recent
2000 character limit reached

CASE -- Condition-Aware Sentence Embeddings for Conditional Semantic Textual Similarity Measurement (2503.17279v3)

Published 21 Mar 2025 in cs.CL

Abstract: The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a LLM, where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised nonlinear projection is learned to reduce the dimensionality of the LLM-based text embeddings. We show that CASE significantly outperforms previously proposed Conditional Semantic Textual Similarity (C-STS) methods on an existing standard benchmark dataset. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings. Moreover, we propose a supervised dimensionality reduction method that not only reduces the dimensionality of LLM-based embeddings but also significantly improves their performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.