Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards Carbon Footprint-Aware Recommender Systems for Greener Item Recommendation (2503.17201v1)

Published 21 Mar 2025 in cs.IR

Abstract: The commodity and widespread use of online shopping are having an unprecedented impact on climate, with emission figures from key actors that are easily comparable to those of a large-scale metropolis. Despite online shopping being fueled by recommender systems (RecSys) algorithms, the role and potential of the latter in promoting more sustainable choices is little studied. One of the main reasons for this could be attributed to the lack of a dataset containing carbon footprint emissions for the items. While building such a dataset is a rather challenging task, its presence is pivotal for opening the doors to novel perspectives, evaluations, and methods for RecSys research. In this paper, we target this bottleneck and study the environmental role of RecSys algorithms. First, we mine a dataset that includes carbon footprint emissions for its items. Then, we benchmark conventional RecSys algorithms in terms of accuracy and sustainability as two faces of the same coin. We find that RecSys algorithms optimized for accuracy overlook greenness and that longer recommendation lists are greener but less accurate. Then, we show that a simple reranking approach that accounts for the item's carbon footprint can establish a better trade-off between accuracy and greenness. This reranking approach is modular, ready to use, and can be applied to any RecSys algorithm without the need to alter the underlying mechanisms or retrain models. Our results show that a small sacrifice of accuracy can lead to significant improvements of recommendation greenness across all algorithms and list lengths. Arguably, this accuracy-greenness trade-off could even be seen as an enhancement of user satisfaction, particularly for purpose-driven users who prioritize the environmental impact of their choices. We anticipate this work will serve as the starting point for studying RecSys for more sustainable recommendations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.