Papers
Topics
Authors
Recent
2000 character limit reached

Text2Model: Generating dynamic chemical reactor models using large language models (LLMs) (2503.17004v1)

Published 21 Mar 2025 in cs.PL and cs.CL

Abstract: As LLMs have shown remarkable capabilities in conversing via natural language, the question arises as to how LLMs could potentially assist chemical engineers in research and industry with domain-specific tasks. We generate dynamic chemical reactor models in Modelica code format from textual descriptions as user input. We fine-tune Llama 3.1 8B Instruct on synthetically generated Modelica code for different reactor scenarios. We compare the performance of our fine-tuned model to the baseline Llama 3.1 8B Instruct model and GPT4o. We manually assess the models' predictions regarding the syntactic and semantic accuracy of the generated dynamic models. We find that considerable improvements are achieved by the fine-tuned model with respect to both the semantic and the syntactic accuracy of the Modelica models. However, the fine-tuned model lacks a satisfactory ability to generalize to unseen scenarios compared to GPT4o.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.