Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Characterizing the Convergence of Game Dynamics via Potentialness (2503.16285v1)

Published 20 Mar 2025 in cs.GT

Abstract: Understanding the convergence landscape of multi-agent learning is a fundamental problem of great practical relevance in many applications of artificial intelligence and machine learning. While it is known that learning dynamics converge to Nash equilibrium in potential games, the behavior of dynamics in many important classes of games that do not admit a potential is poorly understood. To measure how ''close'' a game is to being potential, we consider a distance function, that we call ''potentialness'', and which relies on a strategic decomposition of games introduced by Candogan et al. (2011). We introduce a numerical framework enabling the computation of this metric, which we use to calculate the degree of ''potentialness'' in generic matrix games, as well as (non-generic) games that are important in economic applications, namely auctions and contests. Understanding learning in the latter games has become increasingly important due to the wide-spread automation of bidding and pricing with no-regret learning algorithms. We empirically show that potentialness decreases and concentrates with an increasing number of agents or actions; in addition, potentialness turns out to be a good predictor for the existence of pure Nash equilibria and the convergence of no-regret learning algorithms in matrix games. In particular, we observe that potentialness is very low for complete-information models of the all-pay auction where no pure Nash equilibrium exists, and much higher for Tullock contests, first-, and second-price auctions, explaining the success of learning in the latter. In the incomplete-information version of the all-pay auction, a pure Bayes-Nash equilibrium exists and it can be learned with gradient-based algorithms. Potentialness nicely characterizes these differences to the complete-information version.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.