Controllable Segmentation-Based Text-Guided Style Editing (2503.16129v1)
Abstract: We present a novel approach for controllable, region-specific style editing driven by textual prompts. Building upon the state-space style alignment framework introduced by \emph{StyleMamba}, our method integrates a semantic segmentation model into the style transfer pipeline. This allows users to selectively apply text-driven style changes to specific segments (e.g., turn the building into a cyberpunk tower'') while leaving other regions (e.g.,people'' or ``trees'') unchanged. By incorporating region-wise condition vectors and a region-specific directional loss, our method achieves high-fidelity transformations that respect both semantic boundaries and user-driven style descriptions. Extensive experiments demonstrate that our approach can flexibly handle complex scene stylizations in real-world scenarios, improving control and quality over purely global style transfer methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.