Ranking Counterfactual Explanations (2503.15817v1)
Abstract: AI-driven outcomes can be challenging for end-users to understand. Explanations can address two key questions: "Why this outcome?" (factual) and "Why not another?" (counterfactual). While substantial efforts have been made to formalize factual explanations, a precise and comprehensive study of counterfactual explanations is still lacking. This paper proposes a formal definition of counterfactual explanations, proving some properties they satisfy, and examining the relationship with factual explanations. Given that multiple counterfactual explanations generally exist for a specific case, we also introduce a rigorous method to rank these counterfactual explanations, going beyond a simple minimality condition, and to identify the optimal ones. Our experiments with 12 real-world datasets highlight that, in most cases, a single optimal counterfactual explanation emerges. We also demonstrate, via three metrics, that the selected optimal explanation exhibits higher representativeness and can explain a broader range of elements than a random minimal counterfactual. This result highlights the effectiveness of our approach in identifying more robust and comprehensive counterfactual explanations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.