Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

AutoDrive-QA- Automated Generation of Multiple-Choice Questions for Autonomous Driving Datasets Using Large Vision-Language Models (2503.15778v1)

Published 20 Mar 2025 in cs.CV and cs.RO

Abstract: In autonomous driving, open-ended question answering often suffers from unreliable evaluations because freeform responses require either complex metrics or subjective human judgment. To address this challenge, we introduce AutoDrive-QA, an automatic pipeline that converts existing driving QA datasets (including DriveLM, NuScenes-QA, and LingoQA) into a structured multiple-choice question (MCQ) format. This benchmark systematically assesses perception, prediction, and planning tasks, providing a standardized and objective evaluation framework. AutoDrive-QA employs an automated pipeline that leverages LLMs to generate high-quality, contextually relevant distractors based on domain-specific error patterns commonly found in autonomous driving scenarios. To evaluate both general capabilities and generalization performance, we test the benchmark on three public datasets and conduct zero-shot experiments on an unseen dataset. The zero-shot evaluations reveal that GPT-4V leads with 69.57% accuracy -- achieving 74.94% in Perception, 65.33% in Prediction, and 68.45% in Planning -- demonstrating that while all models excel in Perception, they struggle in Prediction. Consequently, AutoDrive-QA establishes a rigorous, unbiased standard for integrating and evaluating different vision-LLMs across various autonomous driving datasets, thereby improving generalization in this field. We release all the codes in the AutoDrive-QA GitHub Repository.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube