Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Transport-Related Surface Detection with Machine Learning: Analyzing Temporal Trends in Madrid and Vienna (2503.15653v1)

Published 19 Mar 2025 in cs.CV

Abstract: This study explores the integration of machine learning into urban aerial image analysis, with a focus on identifying infrastructure surfaces for cars and pedestrians and analyzing historical trends. It emphasizes the transition from convolutional architectures to transformer-based pre-trained models, underscoring their potential in global geospatial analysis. A workflow is presented for automatically generating geospatial datasets, enabling the creation of semantic segmentation datasets from various sources, including WMS/WMTS links, vectorial cartography, and OpenStreetMap (OSM) overpass-turbo requests. The developed code allows a fast dataset generation process for training machine learning models using openly available data without manual labelling. Using aerial imagery and vectorial data from the respective geographical offices of Madrid and Vienna, two datasets were generated for car and pedestrian surface detection. A transformer-based model was trained and evaluated for each city, demonstrating good accuracy values. The historical trend analysis involved applying the trained model to earlier images predating the availability of vectorial data 10 to 20 years, successfully identifying temporal trends in infrastructure for pedestrians and cars across different city areas. This technique is applicable for municipal governments to gather valuable data at a minimal cost.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube