Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Euclid Quick Data Release (Q1). LEMON -- Lens Modelling with Neural networks. Automated and fast modelling of Euclid gravitational lenses with a singular isothermal ellipsoid mass profile (2503.15329v1)

Published 19 Mar 2025 in astro-ph.CO

Abstract: The Euclid mission aims to survey around 14000 deg{2} of extragalactic sky, providing around 10{5} gravitational lens images. Modelling of gravitational lenses is fundamental to estimate the total mass of the lens galaxy, along with its dark matter content. Traditional modelling of gravitational lenses is computationally intensive and requires manual input. In this paper, we use a Bayesian neural network, LEns MOdelling with Neural networks (LEMON), for modelling Euclid gravitational lenses with a singular isothermal ellipsoid mass profile. Our method estimates key lens mass profile parameters, such as the Einstein radius, while also predicting the light parameters of foreground galaxies and their uncertainties. We validate LEMON's performance on both mock Euclid data sets, real Euclidised lenses observed with Hubble Space Telescope (hereafter HST), and real Euclid lenses found in the Perseus ERO field, demonstrating the ability of LEMON to predict parameters of both simulated and real lenses. Results show promising accuracy and reliability in predicting the Einstein radius, axis ratio, position angle, effective radius, S\'ersic index, and lens magnitude for simulated lens galaxies. The application to real data, including the latest Quick Release 1 strong lens candidates, provides encouraging results, particularly for the Einstein radius. We also verified that LEMON has the potential to accelerate traditional modelling methods, by giving to the classical optimiser the LEMON predictions as starting points, resulting in a speed-up of up to 26 times the original time needed to model a sample of gravitational lenses, a result that would be impossible with randomly initialised guesses. This work represents a significant step towards efficient, automated gravitational lens modelling, which is crucial for handling the large data volumes expected from Euclid.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube