Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Positivity Proofs for Linear Recurrences with Several Dominant Eigenvalues (2503.14264v1)

Published 18 Mar 2025 in cs.SC

Abstract: Deciding the positivity of a sequence defined by a linear recurrence and initial conditions is, in general, a hard problem. When the coefficients of the recurrences are constants, decidability has only been proven up to order 5. The difficulty arises when the characteristic polynomial of the recurrence has several roots of maximal modulus, called dominant roots of the recurrence. We study the positivity problem for recurrences with polynomial coefficients, focusing on sequences of Poincar\'e type, which are perturbations of constant-coefficient recurrences. The dominant eigenvalues of a recurrence in this class are the dominant roots of the associated constant-coefficient recurrence. Previously, we have proved the decidability of positivity for recurrences having a unique, simple, dominant eigenvalue, under a genericity assumption. The associated algorithm proves positivity by constructing a positive cone contracted by the recurrence operator. We extend this cone-based approach to a larger class of recurrences, where a contracted cone may no longer exist. The main idea is to construct a sequence of cones. Each cone in this sequence is mapped by the recurrence operator to the next. This construction can be applied to prove positivity by induction. For recurrences with several simple dominant eigenvalues, we provide a condition that ensures that these successive inclusions hold. Additionally, we demonstrate the applicability of our method through examples, including recurrences with a double dominant eigenvalue.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.