Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

BG-Triangle: Bézier Gaussian Triangle for 3D Vectorization and Rendering (2503.13961v1)

Published 18 Mar 2025 in cs.GR and cs.CV

Abstract: Differentiable rendering enables efficient optimization by allowing gradients to be computed through the rendering process, facilitating 3D reconstruction, inverse rendering and neural scene representation learning. To ensure differentiability, existing solutions approximate or re-formulate traditional rendering operations using smooth, probabilistic proxies such as volumes or Gaussian primitives. Consequently, they struggle to preserve sharp edges due to the lack of explicit boundary definitions. We present a novel hybrid representation, B\'ezier Gaussian Triangle (BG-Triangle), that combines B\'ezier triangle-based vector graphics primitives with Gaussian-based probabilistic models, to maintain accurate shape modeling while conducting resolution-independent differentiable rendering. We present a robust and effective discontinuity-aware rendering technique to reduce uncertainties at object boundaries. We also employ an adaptive densification and pruning scheme for efficient training while reliably handling level-of-detail (LoD) variations. Experiments show that BG-Triangle achieves comparable rendering quality as 3DGS but with superior boundary preservation. More importantly, BG-Triangle uses a much smaller number of primitives than its alternatives, showcasing the benefits of vectorized graphics primitives and the potential to bridge the gap between classic and emerging representations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube