Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Regularized Parameter Estimation in Mixed Model Trace Regression (2503.13782v1)

Published 18 Mar 2025 in stat.ME and stat.CO

Abstract: We introduce mixed model trace regression (MMTR), a mixed model linear regression extension for scalar responses and high-dimensional matrix-valued covariates. MMTR's fixed effects component is equivalent to trace regression, with an element-wise lasso penalty imposed on the regression coefficients matrix to facilitate the estimation of a sparse mean parameter. MMTR's key innovation lies in modeling the covariance structure of matrix-variate random effects as a Kronecker product of low-rank row and column covariance matrices, enabling sparse estimation of the covariance parameter through low-rank constraints. We establish identifiability conditions for the estimation of row and column covariance matrices and use them for rank selection by applying group lasso regularization on the columns of their respective Cholesky factors. We develop an Expectation-Maximization (EM) algorithm extension for numerically stable parameter estimation in high-dimensional applications. MMTR achieves estimation accuracy comparable to leading regularized quasi-likelihood competitors across diverse simulation studies and attains the lowest mean square prediction error compared to its competitors on a publicly available image dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: