PrETi: Predicting Execution Time in Early Stage with LLVM and Machine Learning (2503.13679v1)
Abstract: We introduce preti, a novel framework for predicting software execution time during the early stages of development. preti leverages an LLVM-based simulation environment to extract timing-related runtime information, such as the count of executed LLVM IR instructions. This information, combined with historical execution time data, is utilized to train machine learning models for accurate time prediction. To further enhance prediction accuracy, our approach incorporates simulations of cache accesses and branch prediction. The evaluations on public benchmarks demonstrate that preti achieves an average Absolute Percentage Error (APE) of 11.98\%, surpassing state-of-the-art methods. These results underscore the effectiveness and efficiency of preti as a robust solution for early-stage timing analysis.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.