Papers
Topics
Authors
Recent
2000 character limit reached

PrETi: Predicting Execution Time in Early Stage with LLVM and Machine Learning (2503.13679v1)

Published 17 Mar 2025 in cs.PF and cs.LG

Abstract: We introduce preti, a novel framework for predicting software execution time during the early stages of development. preti leverages an LLVM-based simulation environment to extract timing-related runtime information, such as the count of executed LLVM IR instructions. This information, combined with historical execution time data, is utilized to train machine learning models for accurate time prediction. To further enhance prediction accuracy, our approach incorporates simulations of cache accesses and branch prediction. The evaluations on public benchmarks demonstrate that preti achieves an average Absolute Percentage Error (APE) of 11.98\%, surpassing state-of-the-art methods. These results underscore the effectiveness and efficiency of preti as a robust solution for early-stage timing analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.