Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

TransECG: Leveraging Transformers for Explainable ECG Re-identification Risk Analysis (2503.13495v1)

Published 11 Mar 2025 in eess.SP and cs.LG

Abstract: Electrocardiogram (ECG) signals are widely shared across multiple clinical applications for diagnosis, health monitoring, and biometric authentication. While valuable for healthcare, they also carry unique biometric identifiers that pose privacy risks, especially when ECG data shared across multiple entities. These risks are amplified in shared environments, where re-identification threats can compromise patient privacy. Existing deep learning re-identification models prioritize accuracy but lack explainability, making it challenging to understand how the unique biometric characteristics encoded within ECG signals are recognized and utilized for identification. Without these insights, despite high accuracy, developing secure and trustable ECG data-sharing frameworks remains difficult, especially in diverse, multi-source environments. In this work, we introduce TransECG, a Vision Transformer (ViT)-based method that uses attention mechanisms to pinpoint critical ECG segments associated with re-identification tasks like gender, age, and participant ID. Our approach demonstrates high accuracy (89.9% for gender, 89.9% for age, and 88.6% for ID re-identification) across four real-world datasets with 87 participants. Importantly, we provide key insights into ECG components such as the R-wave, QRS complex, and P-Q interval in re-identification. For example, in the gender classification, the R wave contributed 58.29% to the model's attention, while in the age classification, the P-R interval contributed 46.29%. By combining high predictive performance with enhanced explainability, TransECG provides a robust solution for privacy-conscious ECG data sharing, supporting the development of secure and trusted healthcare data environment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.