Onboard Terrain Classification via Stacked Intelligent Metasurface-Diffractive Deep Neural Networks from SAR Level-0 Raw Data
Abstract: This paper introduces a novel approach for real-time onboard terrain classification from Sentinel-1 (S1) level-0 raw In-phase/Quadrature (IQ) data, leveraging a Stacked Intelligent Metasurface (SIM) to perform inference directly in the analog wave domain. Unlike conventional digital deep neural networks, the proposed multi-layer Diffractive Deep Neural Network (D$2$NN) setup implements automatic feature extraction as electromagnetic waves propagate through stacked metasurface layers. This design not only reduces reliance on expensive downlink bandwidth and high-power computing at terrestrial stations but also achieves performance levels around 90\% directly from the real raw IQ data, in terms of accuracy, precision, recall, and F1 Score. Our method therefore helps bridge the gap between next-generation remote sensing tasks and in-orbit processing needs, paving the way for computationally efficient remote sensing applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.