Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Toward Generative 6G Simulation: An Experimental Multi-Agent LLM and ns-3 Integration (2503.13402v1)

Published 17 Mar 2025 in cs.NI

Abstract: The move toward open Sixth-Generation (6G) networks necessitates a novel approach to full-stack simulation environments for evaluating complex technology developments before prototyping and real-world implementation. This paper introduces an innovative approach\footnote{A lightweight, mock version of the code is available on GitHub at that combines a multi-agent framework with the Network Simulator 3 (ns-3) to automate and optimize the generation, debugging, execution, and analysis of complex 5G network scenarios. Our framework orchestrates a suite of specialized agents -- namely, the Simulation Generation Agent, Test Designer Agent, Test Executor Agent, and Result Interpretation Agent -- using advanced LangChain coordination. The Simulation Generation Agent employs a structured chain-of-thought (CoT) reasoning process, leveraging LLMs and retrieval-augmented generation (RAG) to translate natural language simulation specifications into precise ns-3 scripts. Concurrently, the Test Designer Agent generates comprehensive automated test suites by integrating knowledge retrieval techniques with dynamic test case synthesis. The Test Executor Agent dynamically deploys and runs simulations, managing dependencies and parsing detailed performance metrics. At the same time, the Result Interpretation Agent utilizes LLM-driven analysis to extract actionable insights from the simulation outputs. By integrating external resources such as library documentation and ns-3 testing frameworks, our experimental approach can enhance simulation accuracy and adaptability, reducing reliance on extensive programming expertise. A detailed case study using the ns-3 5G-LENA module validates the effectiveness of the proposed approach. The code generation process converges in an average of 1.8 iterations, has a syntax error rate of 17.0%, a mean response time of 7.3 seconds, and receives a human evaluation score of 7.5.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube