Papers
Topics
Authors
Recent
2000 character limit reached

Verification Learning: Make Unsupervised Neuro-Symbolic System Feasible (2503.12917v2)

Published 17 Mar 2025 in cs.AI

Abstract: The current Neuro-Symbolic (NeSy) Learning paradigm suffers from an over-reliance on labeled data, so if we completely disregard labels, it leads to less symbol information, a larger solution space, and more shortcuts-issues that current Nesy systems cannot resolve. This paper introduces a novel learning paradigm, Verification Learning (VL), which addresses this challenge by transforming the label-based reasoning process in Nesy into a label-free verification process. VL achieves excellent learning results solely by relying on unlabeled data and a function that verifies whether the current predictions conform to the rules. We formalize this problem as a Constraint Optimization Problem (COP) and propose a Dynamic Combinatorial Sorting (DCS) algorithm that accelerates the solution by reducing verification attempts, effectively lowering computational costs and introduce a prior alignment method to address potential shortcuts. Our theoretical analysis points out which tasks in Nesy systems can be completed without labels and explains why rules can replace infinite labels for some tasks, while for others the rules have no effect. We validate the proposed framework through several fully unsupervised tasks including addition, sort, match, and chess, each showing significant performance and efficiency improvements.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.