On Mañé's critical value for the two-component Hunter-Saxton system and a infnite dimensional magnetic Hopf-Rinow theorem (2503.12901v1)
Abstract: In this paper, we introduce a nonlinear system of partial differential equations, the magnetic two-component Hunter-Saxton system (M2HS). This system is formulated as a magnetic geodesic equation on an infinite-dimensional Lie group equipped with a right-invariant metric, the $\dot{H}1$ -metric, which is closely related to the infinite-dimensional Fisher-Rao metric, and the derivative of an infinite-dimensional contact-type form as the magnetic field. We define Ma~n\'e's critical value for exact magnetic systems on Hilbert manifolds in full generality and compute it explicitly for the (M2HS). Moreover, we establish an infinite-dimensional Hopf-Rinow theorem for this magnetic system, where Ma~n\'e's critical value serves as the threshold beyond which the Hopf-Rinow theorem no longer holds. This geometric framework enables us to thoroughly analyze the blow-up behavior of solutions to the (M2HS). Using this insight, we extend solutions beyond blow-up by introducing and proving the existence of global conservative weak solutions. This extension is facilitated by extending the Madelung transform from an isometry into a magnetomorphism, embedding the magnetic system into a magnetic system on an infinite-dimensional sphere equipped with the derivative of the standard contact form as the magnetic field. Crucially, this setup can always be reduced, via a dynamical reduction theorem, to a totally magnetic three-sphere, providing a deeper understanding of the underlying dynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.