Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modelling Child Learning and Parsing of Long-range Syntactic Dependencies

Published 17 Mar 2025 in cs.CL | (2503.12832v1)

Abstract: This work develops a probabilistic child language acquisition model to learn a range of linguistic phenonmena, most notably long-range syntactic dependencies of the sort found in object wh-questions, among other constructions. The model is trained on a corpus of real child-directed speech, where each utterance is paired with a logical form as a meaning representation. It then learns both word meanings and language-specific syntax simultaneously. After training, the model can deduce the correct parse tree and word meanings for a given utterance-meaning pair, and can infer the meaning if given only the utterance. The successful modelling of long-range dependencies is theoretically important because it exploits aspects of the model that are, in general, trans-context-free.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.