Causal Feature Learning in the Social Sciences (2503.12784v1)
Abstract: Variable selection poses a significant challenge in causal modeling, particularly within the social sciences, where constructs often rely on inter-related factors such as age, socioeconomic status, gender, and race. Indeed, it has been argued that such attributes must be modeled as macro-level abstractions of lower-level manipulable features, in order to preserve the modularity assumption essential to causal inference. This paper accordingly extends the theoretical framework of Causal Feature Learning (CFL). Empirically, we apply the CFL algorithm to diverse social science datasets, evaluating how CFL-derived macrostates compare with traditional microstates in downstream modeling tasks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.