Papers
Topics
Authors
Recent
2000 character limit reached

Algebraic Adversarial Attacks on Explainability Models

Published 16 Mar 2025 in cs.LG and math.GR | (2503.12683v1)

Abstract: Classical adversarial attacks are phrased as a constrained optimisation problem. Despite the efficacy of a constrained optimisation approach to adversarial attacks, one cannot trace how an adversarial point was generated. In this work, we propose an algebraic approach to adversarial attacks and study the conditions under which one can generate adversarial examples for post-hoc explainability models. Phrasing neural networks in the framework of geometric deep learning, algebraic adversarial attacks are constructed through analysis of the symmetry groups of neural networks. Algebraic adversarial examples provide a mathematically tractable approach to adversarial examples. We validate our approach of algebraic adversarial examples on two well-known and one real-world dataset.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.