Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble Kalman-Bucy filtering for nonlinear model predictive control (2503.12474v1)

Published 16 Mar 2025 in math.OC, cs.LG, cs.NA, cs.SY, eess.SY, math.NA, and stat.CO

Abstract: We consider the problem of optimal control for partially observed dynamical systems. Despite its prevalence in practical applications, there are still very few algorithms available, which take uncertainties in the current state estimates and future observations into account. In other words, most current approaches separate state estimation from the optimal control problem. In this paper, we extend the popular ensemble Kalman filter to receding horizon optimal control problems in the spirit of nonlinear model predictive control. We provide an interacting particle approximation to the forward-backward stochastic differential equations arising from Pontryagin's maximum principle with the forward stochastic differential equation provided by the time-continuous ensemble Kalman-Bucy filter equations. The receding horizon control laws are approximated as linear and are continuously updated as in nonlinear model predictive control. We illustrate the performance of the proposed methodology for an inverted pendulum example.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.